Предмет: Алгебра,
автор: anastasi1661
решить неравенства:
1) log3 x * (5 - 2 log3 x) = 3
2) (log2 x)^2 + 3 log1/2 x + 2 = 0
3) (1/2log3 x - 6) * log9 x = 4 (2 - log9 x)
4)log2 x * log3 x = 4 log3 2
5)lg x + 4
______ = 2 lg 100
lg x
Ответы
Автор ответа:
0
1) log₃x * (5 - 2log₃x) = 3
5log₃x - 2log₃²x = 3
2log₃²x - 5log₃x + 3 = 0
log₃x = t
2t² - 5t + 3 =0
t₁ = 1
t₂ =
log₃x = 1
x = 3
log₃x =
x =
Ответ: 3 ;
2) log₂²x + 3log₁/₂x + 2 =0
log₂²x + 3* + 2 = 0
log₂²x - 3log₂x + 2 =0
log₂x = t
t² - 3t + 2 =0
t₁ = 1
t₂ = 2
log₂x = 1
x = 2
log₂x = 2
x = 4
Ответ: 2; 4
3) (1/2log₃x - 6 )*log₉x = 4(2-log₉x)
(1/2log₃x - 6) *
log₃x = t
t² - 12t = 32 - 8t
t² - 4t - 32 = 0
D₁ = 4+32=36
t₁ = 8
t₂ = -4
log₃x = 8
x =
log₃x = -4
x =
4) log₂x * log₃x = 4log₃2
log₃x = 2log₃2 log₃x = -2log₃2
log₃x = log₃4 log₃x = log₃
x=4 x =
5) lg²x + 4 = 2*2*lgx
lg²x - 4lgx + 4 = 0
lgx = t
t² - 4t + 4=0
D₁ = 4-4=0
t = 2
lgx = 2
x = 100
5log₃x - 2log₃²x = 3
2log₃²x - 5log₃x + 3 = 0
log₃x = t
2t² - 5t + 3 =0
t₁ = 1
t₂ =
log₃x = 1
x = 3
log₃x =
x =
Ответ: 3 ;
2) log₂²x + 3log₁/₂x + 2 =0
log₂²x + 3* + 2 = 0
log₂²x - 3log₂x + 2 =0
log₂x = t
t² - 3t + 2 =0
t₁ = 1
t₂ = 2
log₂x = 1
x = 2
log₂x = 2
x = 4
Ответ: 2; 4
3) (1/2log₃x - 6 )*log₉x = 4(2-log₉x)
(1/2log₃x - 6) *
log₃x = t
t² - 12t = 32 - 8t
t² - 4t - 32 = 0
D₁ = 4+32=36
t₁ = 8
t₂ = -4
log₃x = 8
x =
log₃x = -4
x =
4) log₂x * log₃x = 4log₃2
log₃x = 2log₃2 log₃x = -2log₃2
log₃x = log₃4 log₃x = log₃
x=4 x =
5) lg²x + 4 = 2*2*lgx
lg²x - 4lgx + 4 = 0
lgx = t
t² - 4t + 4=0
D₁ = 4-4=0
t = 2
lgx = 2
x = 100
Похожие вопросы
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Математика,
автор: bajgulovaksenia2
Предмет: Математика,
автор: rekaterina84
Предмет: Алгебра,
автор: valentin1111