Предмет: Геометрия,
автор: ilonapasinska
Дано чотири точки A(0;1;1),B(1;1;2),C(2;-2;2),D(2;-3;1). Знайти кут між векторами АB і CD
Ответы
Автор ответа:
2
Даны четыре точки A(0;1;1),B(1;1;2),C(2;-2;2),D(2;-3;1).
Вектор АВ = (1-0; 1-1; 2-1) = (1; 0; 1).
Вектор CD = (2-2; -3-(-2); 1-2) = (0; -1; -1).
Их модули равны:
|AB| = √(1² + 0² + 1²) = √2,
|CD| = √(0² + -1² + -1²) = √2.
Находим косинус угла между векторами.
cos(AB_CD) = (1*0 + 0*(-1) +1*(-1)) /(√2*√2) = -1/2.
Ответ: угол равен 120 градусов.
Похожие вопросы
Предмет: Русский язык,
автор: ученик635
Предмет: Английский язык,
автор: натали169
Предмет: Русский язык,
автор: kigor07
Предмет: Литература,
автор: Почти1умник