Предмет: Математика, автор: mnsv109

Помогите! Тема: производные​

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

4 задание

1

y '=  \frac{(x + 4)'(x - 3) - (x - 3)'(x + 4)}{ {(x - 3)}^{2} }  =  \\  =  \frac{1 \times (x - 3) - 1 \times (x + 4)}{ {(x - 3)}^{2} }  =  \\  =  \frac{x -  3  - x - 4}{ {(x - 3)}^{2} }  =  -  \frac{7}{ {(x - 3)}^{2} }

2

y' =  \frac{(4x - 7)'(3x + 9) - (3x + 9)'(4x -7 )}{ {(3x + 9)}^{2} }  =  \\  =  \frac{4(3x + 9) - 3(4 x - 7)}{ {(3x + 9)}^{2} }  =  \\  =  \frac{12x + 36 - 12x + 21}{ {(3x + 9)}^{2} }  =  \frac{57}{ {(3x + 9)}^{2} }

3

y '=  \frac{( {(x - 4)}^{2})'(3x + 1) - (3x + 1) '{(x - 4)}^{2}  }{ {(3 x + 1)}^{2} }  =  \\  =  \frac{2(x - 4)(3x + 1) - 3 {(x - 4)}^{2} }{ {(3x + 1)}^{2} }  =  \\  =  \frac{(x - 4)(2(3x + 1) - 3(x - 4))}{ {(3x + 1)}^{2} }  =  \\  =  \frac{(x - 4)(6x + 2 - 3x + 12)}{ {(3x + 1)}^{2} }  =  \\  =  \frac{(x - 4)(3x + 14)}{ {(3x + 1)}^{2} }

4

y '=  \frac{( {x}^{3} + 4 {x}^{2})'(3x - 1) - (3x  - 1)'( {x}^{3}  + 4 {x}^{2}  ) }{ {(3x - 1)}^{2} }  =  \\  =  \frac{(3 {x}^{2} + 8x)(3x - 1) - 3( {x}^{3}  + 4 {x}^{2})  }{ {(3x - 1)}^{2} }  =  \\  =  \frac{9 {x}^{3} - 3 {x}^{2} + 24 {x}^{2}   - 8x - 3 {x}^{3}  - 12 {x}^{2}  }{ {(3x - 1)}^{2} }  =  \\  =  \frac{6 {x}^{3}  + 9 {x}^{2} - 8x }{ {(3x - 1)}^{2} }

5

y' =  \frac{(8x - 2)(2x - 1) - 2(4 {x}^{2}  - 2x - 4)}{ {(2x - 1)}^{2} }  =  \\  =  \frac{16 {x}^{2} - 8x - 4x + 2 - 8 {x}^{2} + 4x + 8  }{ {(2x - 1)}^{2} }  =  \\  =  \frac{8 {x}^{2} - 8x + 10 }{ {(2x - 1)}^{2} }

6

y' = ( \frac{4x + 1}{ {x}^{2} + 3x } ) '=  \\  =  \frac{4( {x}^{2}  + 3x) - (2x + 3)(4x + 1)}{ {( {x}^{2} + 3x) }^{2} }  =  \\  =  \frac{4 {x}^{2} + 12x - 8 {x}^{2} - 2x - 12x - 3  }{ {x}^{2}  {(x + 3)}^{2} }  =  \\   = \frac{ - 4 {x}^{2} - 2x - 3 }{ {x}^{2} {(x + 3)}^{2}  }  =  -  \frac{4 {x}^{2} + 2x + 3 }{ {x}^{2} {(x + 3)}^{2}  }

Задание 5

1

y' = 7 \times 7 {(4 {x}^{2}  - 4x + 4)}^{6}  \times (4 {x}^{2}  - 4x + 4)' =  \\  = 49 {(4 {x}^{2} - x + 4) }^{6}  \times (8x - 4)

2

y '= (5 {(1 + 2 {x}^{3}  -  {x}^{2}) }^{ \frac{1}{2} } ) '=  \\  = 5 \times  \frac{1}{2}  {(1 + 2 {x}^{3} -  {x}^{2}  )}^{ -  \frac{1}{2} }  \times (1 + 2 {x}^{3}  -  {x}^{2} ) '=  \\  =  \frac{5(6 {x}^{2} - 2x) }{2 \sqrt{1 + 2 {x}^{3}  -  {x}^{2} } }  =  \frac{5(3 {x}^{2}  - x)}{ \sqrt{1 + 2 {x}^{3}  -  {x}^{2} } }

3

y '= ( \sqrt[3]{6 - 10x - 3x + 5 {x}^{2} } ) '= ( {(5 {x}^{2}  - 13x + 6)}^{ \frac{1}{3} } ) '=  \\  =  \frac{1}{3}  {(5 {x}^{2} - 13x + 6) }^{ -  \frac{2}{3} }  \times (5 {x}^{2}  - 13x + 6)' =  \\  =  \frac{10x - 13}{3 \sqrt[3]{ {(5 {x}^{2}  - 13x + 6)}^{2} } }

4

y' =  \frac{1}{2}  {( {x}^{3}  - 6)}^{ -  \frac{1}{2} }  \times ( {x}^{3}  - 6) '=  \\  =  \frac{3 {x}^{2} }{2 \sqrt{ {x}^{3} - 6 } }

5

y' = ( \sqrt[3]{ \frac{7}{2 {x}^{2}  + 1} } ) '= ( \frac{ \sqrt[3]{7} }{ \sqrt[3]{2 {x}^{2}  + 1} } )' =  \sqrt[3]{7} ( {(2 {x}^{2} + 1) }^{ -  \frac{1}{3} } )' =  \\  =  \sqrt[3]{7}  \times ( -  \frac{1}{3} ) ({2 {x}^{2}  + 1)}^{ -  \frac{4}{3} }  \times (2 {x}^{2}  + 1)' =  \\  =  -  \frac{ \sqrt[3]{7} }{ 3 }  \times  \frac{1}{ \sqrt[3]{ {(2 {x}^{2}  + 1)}^{4} } }  \times 4x =  -  \frac{4x}{3}  \times  \sqrt[ 3]{ \frac{7}{ {(2 {x}^{2}  + 1)}^{4} } }


Ternov21: https://znanija.com/task/43772253?utm_source=android&utm_medium=share&utm_campaign=question
Похожие вопросы