Предмет: Геометрия,
автор: izzatriandafilidi001
На продолжении стороны AC тупоугольного треугольника ABC взята точка K, как показано на рисунке. Докажи, что KB > AB.
Приложения:
![](https://files.topotvet.com/i/300/300b1dfb6869b174b593e06047a9ad8d.jpeg)
burunduck77:
нашел ответ?
Ответы
Автор ответа:
48
Ответ: на фотке
Объяснение:
1. АВС угол С - тупой,
2. То углы А и В - острые.
3. А так как угол А - смежный с углом КАВ,
4. То КАВ - тупой угол
5. Тогда в тупоугольном треугольнике АКВ
6. К и АВК – острые углы
7. Так как в треугольнике АКВ против стороны КВ лежит тупой угол - КАВ
8. а сторона АВ лежит против острого угла К
9. То есть, КАВ>К, то КВ>АВ
Приложения:
![](https://files.topotvet.com/i/634/6346e96250bb3b86088bbdc35fc74ec8.jpg)
Похожие вопросы
Предмет: Русский язык,
автор: Otrizal455
Предмет: Физика,
автор: SsdudakoVa
Предмет: Русский язык,
автор: AxErty379
Предмет: Математика,
автор: BlackCat34576
Предмет: Музыка,
автор: yuliyashestako