Предмет: Геометрия,
автор: xar4ak7even5
Найти угол между кривой у = х-х^3 и прямой у = 5х
Ответы
Автор ответа:
1
Даны кривая у = х - х^3 и прямая у = 5х
.
Находим их общую точку - точку пересечения.
Приравняем х - х^3 = 5х,
4x + х^3 = 0,
x(4 + x^2) = 0,
x = 0 один корень,
x^2 = -4 не имеет решения.
Угол между кривой и прямой равен углу между касательной к кривой и прямой.
Тангенс угла наклона касательной к оси Ох равен производной функции.
y' = 1 - 3x^2.
В точке х = 0 производная равна 1, то есть tg(fi) = 1.
Угол между прямыми находим по формуле:
tgα = (k2 - k1)/(1 + k2*k1) = (5 - 1)/(1 + 5*1) = 4/6 = 2/3.
α = arctg(2/3) = 0,5880 радиан или 33,690 градуса.
Приложения:
Похожие вопросы
Предмет: Математика,
автор: dubovetskirya
Предмет: Математика,
автор: Sashapetuxov12
Предмет: Геометрия,
автор: midjjd
Предмет: Математика,
автор: likatigraa
Предмет: Алгебра,
автор: stopakovbas