ПОМОГИТЕ!!! 1)Сколько различных четных пятизначных чисел можно составить из цифр 0,1,2,3,4,5 , использую каждую цифру только один раз?
2)Какой будет результат, если цифры могут повторятся?
Ответы
Ответ:
1:
Если цифры повторно использовать нельзя, то у меня получается следующее:
Четные числа будут заканчиваться либо на 0, либо на 2, либо на 4.
Количество чисел, которые заканчиваются на 0.
Первую цифру числа мы можем выбрать 4-мя способами (1,2,3,4), вторую 3-мя способами, так как одну цифру мы уже использовали для первой позиции, для 3-ей позиции остается 2 способа и т.д. Тогда воспользуемся комбинаторным правилом умножения и получим:
4*3*2*1=24
Количество чисел, которые заканчиваются на 2
Первую цифру числа мы можем выбрать 3-мя спосособами, так ноль не может быть ведущим,
вторую цифру тоже 3-мя способами, так добавился ноль, а одна цифра уже использована в первой позиции, для третьей позиции остается 2 числа, а для 4-ой всего одно. Тогда воспользуемся комбинаторным правилом умножения и получим:
3*3*2*1=18
Количество чисел, которые заканчиваются на 4
Аналогично, как считалось для чисел, заканчивающихся на 2
3*3*2*1=18
Сложим результаты пунктов 1-3, получим
18+18+24=60
Ответ: 60.
2:
На первой позиции может стоять одна из пяти цифр. На втором - одна из четырёх оставшихся. На третьем - одна из трёх оставшихся.
Итого: 5*4*3 = 60 чисел.
Объяснение:
тут у меня и решение и объяснение