Предмет: Алгебра, автор: Klayzi

Дано уравнение: \frac{x^{2} }{x^{2} -25}=\frac{5x}{x^{2} -25}

А) укажите область допустимых значений уравнения

Б) приведите рациональное уравнение к квадратному уравнению

В) найдите решения рационального уравнения


Klayzi: Срочно надо.

Ответы

Автор ответа: Аноним
2

Ответ:

x=0

Объяснение:

x^2≠25

x≠5  x≠-5

(x^2-5x)/(x^2-25)=0

x(x-5)/(x-5)(x+5)=0

x/(x+5)=0

x=0

Похожие вопросы
Предмет: Алгебра, автор: ksks41774
Предмет: Химия, автор: ioiaaea33