Предмет: Алгебра, автор: kerimovaaliya36

Докажите,что при любом натуральном n значение выражения
5) 9^n-8n-9 кратно 8, n>1​

Ответы

Автор ответа: Artem112
1

(9^n -8n -9)\ \vdots\ 8

1 шаг. Проверим справедливость утверждения при n=2:

9^2-8\cdot2-9=81-16-9=56\ \vdots\ 8 - верно

2 шаг. Предположим, что при n=k следующее утверждение верно:

(9^k -8k -9)\ \vdots\ 8

3 шаг. Докажем, что при n=k+1 следующее утверждение также будет верно:

(9^{k+1} -8(k+1) -9)\ \vdots\ 8

Для доказательства выполним преобразования:

9^{k+1} -8(k+1) -9=9\cdot9^k-8k-8-9=9^k+8\cdot9^k-8k-8-9=

=(9^k-8k-9)+8\cdot9^k-8=(9^k-8k-9)+8(9^k-1)

Первое слагаемое делится на 8 по предположению, сделанному на предыдущем шаге. Второе слагаемое делится на 8, так как оно содержит множитель 8. Сумма двух выражений, делящихся на 8, также делится на 8, то есть, кратна 8. Доказано.


Baloblyanov: ger ger ger ger
PeskovA67S: спс)
Похожие вопросы
Предмет: Литература, автор: damir1109