Предмет: Алгебра,
автор: Алкадиеныч
Доказать
Алкадиеныч:
p>0
Ответы
Автор ответа:
2
1) Допустим, что все
Тогда, согласно неравенству между средним арифметическим и средним геометрическим
Тогда =>
Обе части нер-ва (1) неотрицательны, а тогда их можно возводить в одинаковую степень. Выбрав степень , получим неравенство из условия.
2) Теперь пусть среди присутствуют отрицательные числа, причем . Но правая часть исходного неравенства неотрицательна, а значит неравенство очевидно.
3) Остается рассмотреть случай, когда среди присутствуют отрицательные числа, причем
Значит . А тогда, в соответствии с пунктом 1), - и в данном случае неравенство верно.
А значит исходное неравенство верно для всех допустимых наборов , для любых и для любых
Похожие вопросы
Предмет: Русский язык,
автор: bumbokstverskoy
Предмет: Русский язык,
автор: BDG
Предмет: Қазақ тiлi,
автор: izgsliev02
Предмет: Биология,
автор: Коьик