Предмет: Математика, автор: mazurnastena

допоможіть будь ласка, дуже потрібно заздалегідь величезне спасибі :)
Знайти похідну у'х=dy/dx функцій:
1) y=ln sin(2x+5)
2) y sin x=cos(x-y)
3)y=(1+e^x)^x2
^ - степень

Ответы

Автор ответа: IUV
0
y=ln sin(2x+5)
y`=1/
sin(2x+5)*cos(2x+5)*2 = 2*ctg(2x+5)

y*syn(x)=cos(x-y)
y`*sin(x)+y*cos(x)=-sin(x-y)*(1-y`)=-sin(x-y)+sin(x-y)*y`=sin(y-x)-sin(y-x)*y`
y`*(sin(x)+sin(y-x))=sin(y-x)-y*cos(x)
y`=(sin(y-x)-y*cos(x))/(sin(x)+sin(y-x))

3)y=(1+e^x)^x2=e^ln((1+e^x)^x2)
y`=e^ln((1+e^x)^x2)*d(ln((1+e^x)^x2)) / dx = (1+e^x)^x2 * d(x^2*ln(1+e^x)) / dx =
(1+e^x)^x2 * {2x*ln(1+e^x) + x^2*e^x/(1+e^x)}



















Похожие вопросы
Предмет: Химия, автор: 0970818549azz