Предмет: Математика, автор: artemprlog

привести пример любой матрицы с дистрибутивностью​

Ответы

Автор ответа: veronikapodolskaa055
0

Ответ:

Две матрицы называются равными, если они имеют одинаковые размеры и их соответствующие элементы равны:

Am×n=Bm×n⇔aij=bij,i=1,m¯¯¯¯¯¯¯¯¯;j=1,n¯¯¯¯¯¯¯¯

A=(23), B=(4−22+1). Эти матрицы равны, т.к. равны их размеры: A1×2 и B1×2, а также соответствующие элементы: a11=2=b11=4−2=2; a12=3=b12=2+1=3

Задание. Пусть задана матрица A=(abcd) . Найти все элементы матрицы A, если известно, что она равна матрице B=(−1030)

Решение. Так как матрицы A и B равны, то равны и их соответствующие элементы, т.е. a=−1,b=0,c=3,d=0

Ответ. a=−1,b=0,c=3,d=0


artemprlog: Это относится к дистрибутивности?
Похожие вопросы
Предмет: Английский язык, автор: Bell9