Запишите z в алгебраической форме z =-41+63i/50- 6i+1/1-7i
Ответы
Ответ:
Требуется: 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3+z=0.
Решение. Предварительно с помощью данного калькулятора представим число в алгебраическая форме. Затем преобразуем число в тригонометрическую форму с помощью данного сервиса. После преобразований получим:
Алгебраическая форма записи:
z=2sqrt(2)/(1+i)=2sqrt(2)(1-i)/((1+i)(1-i))=2sqrt(2)(1-i)/2=sqrt(2)-i*sqrt(2)
Находим тригонометрическую форму комплексного числа z = 2*sqrt(2)/(1+I)
,
Поскольку x > 0, y < 0, то arg(z) находим как:
Таким образом, тригонометрическая форма комплексного числа z = 2*sqrt(2)/(1+I)
Получаем уравнение w3 + z = 0 или w = (-z)1/3 = (-sqrt(2) + i*sqrt(2))1/3.
Далее решаем с помощью этого сервиса. Находим тригонометрическую форму комплексного числа z = -sqrt(2)+I*sqrt(2)
,
Поскольку x < 0, y ≥ 0, то arg(z) находим как:
Таким образом, тригонометрическая форма комплексного числа z = -sqrt(2)+I*sqrt(2)
Извлекаем
k = 0
или
k = 1
или
k = 2
или