Реши систему уравнений способом алгебраического сложения.
{z−2v=5
5z−6v=32
Ответ:
z=
v=
Ответы
Ответ:
Решение системы уравнений v=1,75
z=8,5
Объяснение:
Решить систему уравнений способом алгебраического сложения.
z−2v=5
5z−6v=32
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -5:
-5z+10v= -25
5z−6v=32
Складываем уравнения:
-5z+5z+10v-6v= -25+32
4v=7
v=7/4
v=1,75
Теперь значение v подставляем в любое из двух уравнений системы и вычисляем z:
z−2v=5
z=5+2*1,75
z=8,5
Решение системы уравнений v=1,75
z=8,5