Предмет: Алгебра,
автор: ata221
37 БАЛЛОВ! Очень нужна ваша помощь! Пожалуйста, помогите! Очень срочно! Знатоки/модераторы/главные мозги/ученые/профессоры, все, кому несложно и кто может правильно и понятно решить, помогите!!, ПОЖАЛУЙСТА...
алгебра, 9 класс...
Приложения:
Ответы
Автор ответа:
2
1.
(sin3A+sinA) / (cos3A+cosA) =
= (2·sin((3A+A)/2)·cos((3A-A)/2)) / (2·cos((3A+A)/2)·cos((3A-A)/2)) =
= (2·sin2A·cosA) / (2·cos2A·cosA) =
= (2·sin2A) / (2·cos2A) =
= (2·sin2A·cos2A) / (2·cos2A·cos2A) =
= (sin4A) / (2·cos²2A) =
= (sin4A) / (2·cos²2A) = (sin4A) / (1+cos4A)
2.
4·cos(A/3)·cos(A/4)·cos(A/6) =
= 4·cos(A/4)·(cos(A/3)·cos(A/6)) =
= 4·cos(A/4)·(1/2)·(cos(A/3+A/6)+cos(A/3-A/6)) =
= 2·cos(A/4)·(cos(A/2)+cos(A/6)) =
= 2·cos(A/4)·cos(A/2)+2·cos(A/4)·cos(A/6) =
= 2·(1/2)·(cos(A/4+A/2)+cos(A/4-A/2)) +
+ 2·(1/2)·(cos(A/4+A/6)+cos(A/4-A/6)) =
= cos(3A/4)+cos(-A/4)+cos(5A/12)+cos(A/12) =
= cos(3A/4)+cos(A/4)+cos(5A/12)+cos(A/12)
Похожие вопросы
Предмет: Русский язык,
автор: deniscorotcky
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: блинчикиии
Предмет: История,
автор: anarchik13
Предмет: Литература,
автор: arina016