Предмет: Геометрия,
автор: vinnightray
Основание пирамиды SABCD —прямоугольник ABCD, боковое ребро SD перпендикулярно плоскости основания. Найдите угол между плоскостями BSC и CSD.
Simba2017:
в задаче нет конкретных данных
Ответы
Автор ответа:
1
Ответ:
Угол между плоскостями BSC и CSD равен 90°.
Объяснение:
Условие перпендикулярности двух плоскостей: "Плоскости α и β перпендикулярны, если одна плоскость проходит через перпендикуляр к другой плоскости".
По теореме о трех перпендикулярах наклонная SC⊥BC, так как проекция DC наклонной SC перпендикулярна ВС (DC и ВС - пересекающиеся стороны прямоугольника) =>
Прямая ВС перпендикулярна плоскости CSD, так как она перпендикулярна двум пересекающимся прямым (DC и SС), лежащим в этой плоскости.
Плоскость BSC проходит через ВС, перпендикулярную плоскости CSD, следовательно, плоскости BSC и CSD перпендикулярны, то есть угол между ними равен 90°.
Приложения:
![](https://files.topotvet.com/i/fbc/fbca58de5d614a57238aaf91ca941fe9.jpg)
Похожие вопросы
Предмет: Математика,
автор: igortrof2012
Предмет: Математика,
автор: igortrof2012
Предмет: Математика,
автор: lixbun
Предмет: Математика,
автор: IrinaKechkina
Предмет: Математика,
автор: АлинаНург