Предмет: Математика, автор: Lait11

натуральное число называется свободным от кубов если ни один из его делителей не является кубом натурального числа большего единицы. оля написала на доске 7000 свободных от кубов чисел. докажите что по меньшей мере одно из них чисел имеет простой делитель больше 20
Помогите пожалуйта

Ответы

Автор ответа: ViMaxAns
2

Решение: Пусть такого числа нет.

Заметим, что тогда все числа могут иметь делители 2, 3, 5, 7, 11, 13, 17, 19.

Также, делители не могут быть в >2 степени.

Значит, для каждого из делителей есть 3 состояния:  делится на квадрат,

делится на число, не делится на число.

Значит, таких чисел максимум 3^8 = 6561 < 7000.

Ч. Т. Д.

Похожие вопросы