Предмет: Алгебра,
автор: vmurukin
найдите двузначное число , которое в 3 раза больше произведения его цифр . Если представить цифры этого числа в обратном порядке , то отношение полученного числа к данному будет равно 3,4
Ответы
Автор ответа:
0
Пусть двузначное число N имеет X десятков и Y единиц, т.е. N = 10X + Y
По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится
число 10Y + X и отношение полученного числа к N равно 3,4, т.е.
10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY
10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4
10Y + X = 34X + 3,4Y
10Y - 3,4Y= 34X - X
6,6Y = 33X
6,6Y = 33X
X = 0,2Y
подставим Х в первое уравнение
10* 0,2Y + Y = 3Y*0,2Y
2Y + Y = 0,6Y^2
0,6Y^2 - 3Y = 0
Y( 0,6Y - 3) = 0
Y = 0 или 0,6Y - 3 =0
0,6Y = 3
Y = 5
если Y = 0 то Х =0 ( не подходит)
если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
ОТВЕТ: 15
По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится
число 10Y + X и отношение полученного числа к N равно 3,4, т.е.
10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY
10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4
10Y + X = 34X + 3,4Y
10Y - 3,4Y= 34X - X
6,6Y = 33X
6,6Y = 33X
X = 0,2Y
подставим Х в первое уравнение
10* 0,2Y + Y = 3Y*0,2Y
2Y + Y = 0,6Y^2
0,6Y^2 - 3Y = 0
Y( 0,6Y - 3) = 0
Y = 0 или 0,6Y - 3 =0
0,6Y = 3
Y = 5
если Y = 0 то Х =0 ( не подходит)
если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
ОТВЕТ: 15
Похожие вопросы
Предмет: Русский язык,
автор: pereskat
Предмет: Литература,
автор: mainmistr
Предмет: Английский язык,
автор: au04314
Предмет: Математика,
автор: Тина555
Предмет: Биология,
автор: salato1999