Предмет: Математика,
автор: yirbas98
В правильной треугольной пирамиде MABC боковые рёбра равны 10, а сторона основания равна 12. Точки G и F делят стороны основания AB и AC соответственно так, что AG:GB=AF:FC=1:5. а) Докажите, что сечение пирамиды плоскостью MGF является равнобедренным треугольником. б) Найдите площадь сечения пирамиды плоскостью MGF
Ответы
Автор ответа:
3
а) В правильной треугольной пирамиде углы боковых граней и боковые рёбра равны. Отрезки AG и AF равны (1/6)*12 = 2. То есть равны между собой. Это доказывает равенство отрезков МG и МF - треугольник MGF равнобедренный.
б) Отрезок GF из подобия находим, равным (1/6)*12 = 2.
Апофема боковой грани равна √(10² - 6²) = √64 = 8.
Тогда отрезки MG и MF равны √(64 + (6 - 2)²) = √80 = 4√5.
Высота треугольника MGF равна √(80 - 1) = √79.
Ответ: S(MGF) = (1/2)*2*√79 = √79 кв.ед.
Похожие вопросы
Предмет: Физика,
автор: dariarin950
Предмет: Українська література,
автор: ivanchernovol09
Предмет: Алгебра,
автор: vitia4103
Предмет: Биология,
автор: kalugerlera