Предмет: Алгебра,
автор: brakoff2003
Четыре числа складывают геометрическую прогрессию. Найдите эти числа, если при увеличении их на 10, 11, 9 и 1 они все так же складывают геометрическую прогрессию
Ответы
Автор ответа:
1
Ответ:
3, 6, 12, 24
Объяснение:
Пусть члены геометрической прогрессии: х, xy, xy2 , xy3 . y -знаменатель прогрессии.
Обозначим a1=x+10, a2=xy+11, a3=xy2 +9, a4=xy3 +1 — члены арифметической прогрессии.
Известно, что a2-a1 = a3-a2 = a4-a3 = d.
Составляем систему:
a2-a1=a4-a3 xy+11 - xy^2 -10 = xy^3 +1- xy^2 -9
a2-a1=a3-a2 xy+11 - xy^2 -10 = xy^2 +9- xy-11
a) xy^3 - xy^2 - xy+x = 9 x[y^2(y-1)-(y-1)] =9 xy-1)(y-1)(y+1)=9
b) xy^2-2xy +x = 3 x(y^2-2y+ 1) = 3 x(y-1)^2= 3
Делим (a) на (b)
y+1 = 3;
y=2;
из (b) x= 3.
Числа 3, 6, 12, 24 - геометрическая прогрессия.
13, 17, 21,25 - арифметическая.
Похожие вопросы
Предмет: Математика,
автор: bozenakramarska71
Предмет: Алгебра,
автор: endzhi04
Предмет: Русский язык,
автор: hihcgibcxhj
Предмет: Математика,
автор: kirillkalin
Предмет: Математика,
автор: математика525