Предмет: Геометрия, автор: anya0574

На боковых сторонах МК и МР равнобедренного треугольника отложены равные отрезки МА и МВ. Точка А и В соединены с серединой О основание треугольника. Докажите, что ОА=ОВ

Ответы

Автор ответа: Brain500
0

Решение:

т.к. MA=MB, а MK=MP(как боковые), AK=BP

Т.к. точки A и B соединены с серединной точкой O, KO=OP

угол MKP=MPK(углы при основании равны)

Отсюда следует, что треуголники KAO и PBO равны по 1 признаку равенства треуголников (по двум сторонам и углу между ними), значит OA=OB

что и требовалось доказать.

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: nikulsinamargarita05
Предмет: Математика, автор: nikadiza