Предмет: Геометрия, автор: DariyaIsakova

Висота ромба дорівнює 24 см, а його діагоналі відносяться як 3:4. Обчисліть площу ромба.
СРОЧНО

Ответы

Автор ответа: ivanproh1
1

Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения  диагоналей - центр  ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение  сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х =>  х = 5см.

Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.

Площадь ромба равна половине произведения его диагоналей.

S = 30*40/2 = 600см².

Похожие вопросы
Предмет: Математика, автор: zhanel24