Предмет: Математика, автор: Molkirama

Помогите решить триганометрические уравнения

Приложения:

Ответы

Автор ответа: NNNLLL54
1

1)\; \; sin2x=-1\; ,\; \; \; 2x=-\frac{\pi }{2}+2\pi n\; ,\; \; x=-\frac{\pi}{4}+\pi n\; ,\; n\in Z\\\\2)\; \; sin\frac{x}{6}=0\; \; ,\; \; \frac{x}{6}=\pi n\; ,\; x=6\pi n\; ,\; n\in Z\\\\3)\; \; sin3x=\frac{\sqrt2}{2}\; \; ,\; 3x=(-1)^{n}\cdot \frac{\pi}{4}+\pi n\; ,\; \; x=(-1)^{n}\cdot \frac{\pi}{12}+\frac{\pi n}{3}\; ,\; n\in Z\\\\4)\; \; sin\frac{x}{3}=-\frac{\sqrt3}{2}\; ,\; \; \frac{x}{3}=(-1)^{n}\cdot (-\frac{\pi }{3})}+\pi n=(-1)^{n+1}\cdot \frac{\pi }{3}+\pi n\; ,\\\\x=(-1)^{n+1}\cdot \pi +3\pi n\; ,\; n\in Z

5)\; \; cos7x=0\; ,\; \; 7x=\frac{\pi }{2}+\pi n\; ,\; x=\frac{\pi }{14}+\frac{\pi n}{7}\; ,\; n\in Z\\\\6)\; \; tg(-5x)=\sqrt3\; ,\; \; -tg5x=\sqrt3\; ,\; \; tg5x=-\sqrt3\; ,\; \; 5x=-\frac{\pi }{3}+\pi n\; ,\; \\\\x=-\frac{\pi }{15}+\frac{\pi n}{5}\; ,\; n\in Z


Molkirama: Можете помочь решить ??
https://znanija.com/task/31040261
Похожие вопросы
Предмет: Математика, автор: molner717