Предмет: Математика,
автор: artk530
Найдите площадь прямоугольного треугольника один катет которого на 1/3 больше другого и на 1/3 меньше гипотенузы.
Ответы
Автор ответа:
1
Примем меньший катет за х, второй будет (х + (1/3)), а гипотенуза (х + (2/3)).
По Пифагору х² + (х + (1/3))² = (х + (2/3))². Раскроем скобки.
х² + х² + (2/3)х + (1/9) = х² + (4/3)х + (4/9). Приведём подобные.
х² - (2/3)х - (1/3) = 0. Приведём к общему знаменателю.
3х² - 2х - 1 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)^2-4*3*(-1)=4-4*3*(-1)=4-12*(-1)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*3)=(4-(-2))/(2*3)=(4+2)/(2*3)=6/(2*3)=6/6=1;
x_2=(-√16-(-2))/(2*3)=(-4-(-2))/(2*3)=(-4+2)/(2*3)=-2/(2*3)=-2/6=-(1/3).
Отрицательный корень не принимаем.
Тогда катеты равны 1 и 1 + (1/3) = 4/3.
Площадь равна (1/2)*1*(4/3) = 2/3.
Похожие вопросы
Предмет: Алгебра,
автор: Аноним
Предмет: Химия,
автор: TheTedra
Предмет: Математика,
автор: ametist957
Предмет: Биология,
автор: VOLK200211
Предмет: Математика,
автор: эдик130