Предмет: Физика,
автор: kerim991199
Два тела массами m1 = 1 кг и m2 = 3 кг движутся навстречу друг другу вдоль горизонтального направления и перед столкновением имеют скорости V1= 2 м/с и V2= 1 м/с. Считая удар центральным и неупругим, найдите какое время будут двигаться тела после удара до остановки, если коэффициент трения тел о поверхность равен μ=0,2?
Ответы
Автор ответа:
3
Применяйте закон сохранения импульса, учитывая что при неупругом столкновении тела соединятся в одно целое, и их массы сложатся
Учитываем направление скоростей
-m1v1+m2v2=(m1+m2)v'
Из этого находим скорость после удара v'
Далее применяем 2 Закон Ньютона(можете зарисовать рисуночек обозначив все силы)
Получится ma=mgμ
a=gμ
Из этого находим ускорение тела
А ещё ускорение a=дельтаv/дельтаt = (v-v0)/t где v0 конечная скорость, v начальная скорость . У нас конечная скорость 0 , начальная v'
Выражаем t : t=v'/a
Подставляем и получаем время
kerim991199:
Я знаю что прошу много, а можно пожалуйста решение, очень прошу
Я же все написал, там только подставить)
Может попробуете сами решить, а если если что подскажу?
V будет 1.25?
Вот тут я допустил ошибочку, у нас же тела движутся навстречу друг другу, значит если проектировать скорости на ось x то знаки будут разные , а так как импульс второго тела больше первого то после столкновения они будут двигаться в сторону в которую двигалось второе тело изначально, поэтому будет вот так выглядеть -m1v1+m2v2=(m1+m2)v' это если взять направление оси x по направлению скорости второго тела
ок, спс
У меня V' 0.25 получилась
да, у меня тоже, спасибо еще раз
Похожие вопросы
Предмет: Английский язык,
автор: kuprievich1984
Предмет: Геометрия,
автор: goljaksvitlana
Предмет: Українська мова,
автор: oksanavasilevna2008
Предмет: Геометрия,
автор: Sasha242424