Предмет: Алгебра, автор: tekilakila

Решить систему
X^2+y^2=37
Xy=6

Ответы

Автор ответа: snow99
2

 {x}^{2}  +  {y}^{2}  = 37 \\ xy = 6 \\  \\  {x}^{2}  +  {y}^{2}  + 2xy - 2xy = 37 \\ xy = 6 \\  \\  {(x + y)}^{2}  - 2xy = 37 \\ xy = 6 \\  \\  {(x + y)}^{2}  - 2 \times 6 = 37 \\ xy = 6 \\  \\  {(x + y)}^{2}  = 49 \\ xy = 6 \\  \\ 1)x + y = 7 \\ xy = 6 \\  \\ y = 7 - x \\ x(7 - x) = 6 \\  \\ y = 7 - x \\ 7x -  {x}^{2}  = 6 \\  \\ y = 7 - x \\  {x}^{2}  - 7x + 6 = 0 \\  \\ x1 = 6 \\ y1 = 1 \\  \\ x2 = 1 \\ y2 = 6 \\  \\ 2) x + y =  - 7 \\ xy = 6 \\  \\ y =  - 7 - x \\ x( - 7 - x) = 6 \\  \\ y =  - 7 - x \\  - 7x -  {x}^{2}  = 6 \\  \\ y =  - 7 - x \\  {x }^{2}  + 7x + 6 = 0 \\  \\ x1 =  - 6 \\ y1 =  - 1 \\  \\ x2 =  - 1 \\ y2 =  - 6
Ответ: (6; 1), (1; 6), (-6; -1), (-1; -6)
Автор ответа: NeZeRAvix
5

 \tt +\left\{\begin{array}{I} \tt x^2+y^2=37  \\\tt xy=6 \ | \cdot 2\end{array}}

 \tt x^2+2xy+y^2=49\\ (x+y)^2=49\\ x+y= \pm 7\\ \\ \left[\begin{array}{I} \left\{\begin{array}{I}\tt x+y=7  \\ \tt xy=6 \end{array}}  \\ \left\{\begin{array}{I}\tt  x+y=-7  \\ \tt xy=6 \end{array}} \end{array}} \ \Leftrightarrow  \ \left[\begin{array}{I} \tt (x; \ y)=  (1; \ 6),\ (6; \ 1) \\ \tt (x; \ y)= (-6; \ -1), \ (-1; \ -6) \end{array}}


Ответ: (6; 1), (1; 6), (-6; -1), (-1; -6)

Похожие вопросы