Предмет: Алгебра, автор: Nishinoyaa

докажите тождества (их 5)

Приложения:

Ответы

Автор ответа: Аноним
1

1.

 \frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{1+(\frac{1}{tg(a)})^{2}}{(\frac{1}{tg(a)})^{2}} = \frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{1+\frac{1}{tg(a)^{2}}}{\frac{1}{tg(a)^{2}}} = \frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{\frac{tg(a)^{2}+1}{tg(a)^{2}}}{\frac{1}{tg(a)^{2}}} = \frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{tg(a)^{2}+1}{1} = tg(a)^{2}*\frac{1}{1}  =tg(a)²×1=tg(a)²;

2.

 (\frac{sin(a)}{cos(a)})^{2}+sin(a)^{2}-\frac{1}{cos(a)^{2}} = \frac{sin(a)^{2}}{cos(a)^{2}}+sin(a)^{2}-\frac{1}{cos(a)^{2}} = \frac{sin(a)^{2}+cos(a)^{2}sin(a)^{2}-1}{cos(a)^{2}} = \frac{-(1-sin(a)^{2})+cos(a)^{2}*sin(a)^{2}}{cos(a)^{2}} = \frac{-cos(a)^{2}+cos(a)^{2}*sin(a)^{2}}{cos(a)^{2}} = \frac{(-1+sin(a)^{2})*cos(a)^{2}}{cos(a)^{2}} = \frac{-(1-sin(a)^{2})cos(a)^{2}}{cos(a)^{2}} = \frac{-cos(a)^{2}*cos(a)^{2}}{cos(a)^{2}} = \frac{-cos(a)^{4}}{cos(a)^{2}} =-cos(a)²;

3.

1+  ((\frac{cos(a)}{sin(a)})^{2}-(\frac{sin(a)^{2}}{cos(a)^{2}})^{2})*cos(a)^{2}  = 1+(\frac{cos(a)^{2}}{sin(a)^{2}}-\frac{sin(a)^{2}}{cos(a)^{2}})*cos(a)^{2} = 1+\frac{cos(a)^{4}-sin(a)^{4}}{sin(a)^{2}*cos(a)^{2}}*cos(a)^{2} = 1+\frac{-(sin(a)^{4}-cos(a)^{4})}{sin(a)^{2}} = 1+\frac{-((sin(a)^{2}-cos(a)^{2})*(sin(a)^{2}+cos(a)^{2}))}{sin(a)^{2}} = 1+\frac{-(-(sin(a)^{2}-cos(a)^{2})*1)}{sin(a)^{2}} = 1+\frac{-(-cos(2a))}{sin(a)^{2}} = 1+\frac{cos(2a)}{sin(a)^{2}} = \frac{sin(a)^{2}+cos(2a)}{sin(a)^{2}}  = \frac{sin(a)^{2}+cos(a)^{2}-sin(a)^{2}}{sin(a)^{2}} = \frac{cos(a)^{2}}{sin(a)^{2}} = (\frac{cos(a)}{sin(a)})^{2}  =ctg(a)²;

4.

cos(2a)+ \frac{2sin(2a)}{\frac{1}{tg(a)}-tg(a)} = cos(2a)+\frac{2sin(2a)}{\frac{1-tg(a)^{2}}{tg(a)}} = cos(2a)+\frac{2sin(2a)}{\frac{1}{\frac{1}{2}*tg(2a)}} = cos(2a)+\frac{2sin(2a)}{\frac{1}{\frac{tg(2a)}{2}}} = cos(2a)+\frac{2sin(2a)}{\frac{2}{tg(2a)}} =cos(2a)+sin(2a)*tg(2a)= cos(2a)+sin(2a)*\frac{sin(2a)}{cos(2a)} =cos(2a)+ \frac{sin(2a)^{2}}{cos(2a)} = \frac{cos(2a)^{2}+sin(2a)^{2}}{cos(2a)} = \frac{1}{cos(2a)} ;

5.

(sin(a)²+(tg(a)·sin(a))²)· \frac{cos(a)}{sin(a)} = (sin(a)^{2}+(\frac{sin(a)}{cos(a)}*sin(a))^{2})*\frac{cos(a)}{sin(a)} =(sin(a)^{2}+ (\frac{sin(a)^{2}}{cos(a)})^{2})*\frac{cos(a)}{sin(a)} = (sin(a)^{2}+\frac{sin(a)^{4}}{cos(a)^{2}})*\frac{cos(a)}{sin(a)} = \frac{cos(a)^{2}*sin(a)^{2}+sin(a)^{4}}{cos(a)^{2}}*\frac{cos(a)}{sin(a)} = \frac{(cos(a)+sin(a)^{2})*sin(a)^{2}}{cos(a)}*\frac{1}{sin(a)} = \frac{1sin(a)}{cos(a)} = \frac{sin(a)}{cos(a)} =tg(a)

Похожие вопросы
Предмет: Алгебра, автор: miheytan2008
Предмет: Математика, автор: катя2374
Предмет: Алгебра, автор: zipirt1