Предмет: Математика, автор: Conn

1.abcda1b1c1d1-параллелепипед, изобразите на рисунке векторы равные 1)ab+b1c1+dd1+cd      2)bd1-b1c1

2. Точка S - середина ребра АС тетраэдра DABC,точка N - середина отрезка DS. Выразите вектор BN через векторы BA = а , ВС = с ,BD = d.

3. В треугольнике KLM точка С - пересечение медиан,Т - середина отрезка NC(N не лежит в плоскости KLM) Разложите вект.МТ по векторам СВ, CD,СС1.

    Помогите, пожалуйста!

Ответы

Автор ответа: hELFire
0
1. В параллелепипеде верны следующие равенства:
vec{AB}=vec{A_1B_1}=vec{DC}=vec{D_1C_1}\vec{BC}=vec{B_1C_1}=vec{AD}=vec{A_1D_1}\vec{AA_1}=vec{BB_1}=vec{DD_1}=vec{CC_1}\
следовательно
vec{AB}+vec{B_1C_1}+vec{DD_1}+vec{CD}=vec{AB}+vec{BC}+vec{CD}+vec{DD_1}=vec{AD_1}\\vec{BD_1}-vec{B_1C_1}=vec{BD_1}-vec{BC}=vec{CD_1}

2.vec{BN}=vec{BD}+vec{DN}=vec d +frac{1}{2}vec{DS}=vec d+frac{1}{2}(vec{BS}-vec{BD})=\=vec d+frac{1}{2}vec{BS}-frac{1}{2}vec d=frac{1}{2}vec d+frac{1}{2}(frac{1}{2}(vec{BA}+vec{BC}))=frac{1}{2}vec d + frac{1}{4}vec a + frac{1}{4}vec c

3. vec{MT}=vec{MN}+vec{NT}=-vec{NM}+frac{1}{2}vec{NC}=-vec c+frac{1}{2}(vec{NM}+vec{MC})=\=frac{1}{2}vec{MC}-frac{1}{2}vec c=frac{1}{2}(frac{2}{3}(vec{MN}+frac{1}{2}(vec{NL}+vec{NK})))-frac{1}{2}vec c=frac{1}{6}vec a + frac{1}{6}vec b-frac{1}{6}vec c

Похожие вопросы
Предмет: Математика, автор: ilaujmanov9477