Предмет: Геометрия,
автор: TrueMSG208
В прямоугольную трапецию вписана окружность.Точка касания делит большую из боковых сторон на отрезки 4 см и 25 см. Найти периметр трапеции.
Ответы
Автор ответа:
3
пусть ∠НЕО = β
Тогда ∠СЕО = β
∠СЕН = 2β
∠АВС = 180 - 2β (как односторонние углы при параллельных основаниях трапеции и секущей)
∠СВО = ∠АВС/2 = 90 - β
∠ВОС = 90 - ∠СВО = 90 - (90 - β) = β
---
ΔВСО ~ ΔЕСО - один угол β, второй прямой
Из подобия
4/R = R/25
R² = 4*25 = 100
R = 10 см
Периметр
P = 4R + 2*(4+25) = 40 + 58 = 98 см
Тогда ∠СЕО = β
∠СЕН = 2β
∠АВС = 180 - 2β (как односторонние углы при параллельных основаниях трапеции и секущей)
∠СВО = ∠АВС/2 = 90 - β
∠ВОС = 90 - ∠СВО = 90 - (90 - β) = β
---
ΔВСО ~ ΔЕСО - один угол β, второй прямой
Из подобия
4/R = R/25
R² = 4*25 = 100
R = 10 см
Периметр
P = 4R + 2*(4+25) = 40 + 58 = 98 см
Приложения:
![](https://files.topotvet.com/i/cea/cea80aa1488d8f9c5ec2d998b83b82f2.png)
polina27meow:
помогите мне пожалуйста! Буду благодарна
Похожие вопросы
Предмет: География,
автор: ip849
Предмет: Химия,
автор: luka9236
Предмет: Математика,
автор: kyy02
Предмет: Алгебра,
автор: t612ty
Предмет: Математика,
автор: DolinaSolnce