Предмет: Геометрия,
автор: Kilimandro
Периметры равнобедренных прямоугольных треугольников относятся
как 2 : 3, а площадь треугольника с большими сторонами равна 18 см2.
Вычислите длину биссектрисы другого треугольника, проведенную из
вершины прямого угла.
Ответы
Автор ответа:
1
1) Известно, что в подобных треугольниках периметры относятся как коэффициент подобия. Тогда Р₁:Р₂=2:3.
2) Площади подобных треугольников относятся как квадрат коэффициента подобия. Тогда S₁:S₂=4:9.
3) Так как известна площадь большего треугольника S₂=18, то найдем площадь меньшего треугольника S₁:18=4:9 ⇒S₁=8
4) Так как по условию эти треугольники равнобедренные, то, обозначив сторону меньшего треугольника за х, составим уравнение для выражения его площади:
5) Зная катеты этого прямоугольного треугольника, найдем по теореме Пифагора его гипотенузу. Она будет равна 4√2
5) Так как треугольник прямоугольный и равнобедренный, то его биссектриса, проведенная из вершины прямого угла, будет являться медианой и высотой. Поэтому, воспользовавшись формулой для нахождения высоты в прямоугольном треугольнике (h=(ab)/c), найдем искомую величину:
(4·4)/(4√2)=4/√2=2√2
Ответ: 2√2
2) Площади подобных треугольников относятся как квадрат коэффициента подобия. Тогда S₁:S₂=4:9.
3) Так как известна площадь большего треугольника S₂=18, то найдем площадь меньшего треугольника S₁:18=4:9 ⇒S₁=8
4) Так как по условию эти треугольники равнобедренные, то, обозначив сторону меньшего треугольника за х, составим уравнение для выражения его площади:
5) Зная катеты этого прямоугольного треугольника, найдем по теореме Пифагора его гипотенузу. Она будет равна 4√2
5) Так как треугольник прямоугольный и равнобедренный, то его биссектриса, проведенная из вершины прямого угла, будет являться медианой и высотой. Поэтому, воспользовавшись формулой для нахождения высоты в прямоугольном треугольнике (h=(ab)/c), найдем искомую величину:
(4·4)/(4√2)=4/√2=2√2
Ответ: 2√2
Похожие вопросы
Предмет: Психология,
автор: Mansour2
Предмет: Русский язык,
автор: smaginavera36
Предмет: Русский язык,
автор: ilvinasabirzanova151
Предмет: Математика,
автор: ПриветИгорь