Предмет: Геометрия,
автор: lizzzzzzzzzzzzzza1
Через точку С окружности с центром О проведена касательная АВ причём АС=СВ докажите что АО=О-В
Ответы
Автор ответа:
8
Ответ:
Доказательство:
Сделаем дополнительное построение: в точку касания С проведем радиус ОС.
Получатся два тр-ка АОС иСОВ. Докажем их равество.
1) угол АСО =углу ОСВ=90о, так как касательная перпендикулярна радиусу, проведенному в точку касания;
2) ОС - общий катет у треугольников;
3) АС=СВ по условию;
значит АОС=СОВ по двум катетам.
В равных треугольниках соответственные стороны равны, т. е. равны между собой и гипотенузы АО=ОВ, ч. т. д.
Объяснение:
Похожие вопросы
Предмет: История,
автор: nasty3023
Предмет: Физика,
автор: brihuncovdanil
Предмет: Алгебра,
автор: fffgghhgffghhk
Предмет: Математика,
автор: 12345839
Предмет: Математика,
автор: slash107