Предмет: Геометрия,
автор: Gelag
Из точки к прямой проведены две наклонные, длины которых равны 11 см и 16 см. Найдите проекции данных наклонных, если одна из проекций на 9см меньше другой.
Пожалуйста с рисунком, на котором все расписанно
Ответы
Автор ответа:
51
Ответ: 3 см, 12 см.
Объяснение:
АВ = 11 см и АС = 16 см - наклонные к прямой а,
АН - перпендикуляр к прямой а, тогда
ВН и СН - проекции соответствующих наклонных.
Большей наклонной соответствует большая проекция.
Пусть ВН = х см, тогда СН = (х + 9) см.
Из прямоугольного треугольника АВН по теореме Пифагора выразим АН:
АН² = АВ² - ВН²
АН² = 11² - x² = 121 - x²
И выразим АН по теореме Пифагора из прямоугольного треугольника АСН:
AH² = AC² - CH²
AH² = 16² - (x + 9)² = 256 - (x² + 18x + 81) =
= 256 - x² - 18x - 81 = 175 - x²- 18х
Приравняем правые части получившихся равенств:
121 - x² = 175 - x²- 18х
18x = 54
x = 3
ВН = 3 см
СН = 3 + 9 = 12 см
Приложения:
Похожие вопросы
Предмет: Қазақ тiлi,
автор: dulatkyzyerke
Предмет: Алгебра,
автор: gameover5913
Предмет: Физика,
автор: vatralikalisa044
Предмет: История,
автор: ShakalCore
Предмет: Геометрия,
автор: wanrltw1