Предмет: Математика, автор: kolunvaleriia

Яке перетворення називають розкладанням многочлена на множники?​

Ответы

Автор ответа: hohlovandrij334
0

Ответ:

Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.

Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.

Розглянемо кілька прикладів.

Приклад 1. Розкласти вираз на множники:

1) 8m + 4;

2) at + 7ар;

3) 15а3b – 10а2b2.

Р о з в’ я з а н н я.

1)

Спільним множником є число 4, тому

8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).

2) Спільним множником є змінна а, тому

At + 7ap = a(t + 7p).

3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,

15а3b – 10а2b2 = 5а2b ∙ 3а – 5a2b ∙ b = 5а2b(3а – 2b).

Приклад 2. Розкласти па множники:

1) 2m(b – с) + 3р(b – с);

2) х(у – t) + c(t – у).

Р о з в ‘ я з а н н я.

1) У даному випадку спільним множником є двочлен b = c.

Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).

2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).

Отже, х(у – t) + c(t – у) = х(у – t) – с(у – t) = (у – t) (х – с).

Похожие вопросы
Предмет: Алгебра, автор: денисЧ1
Предмет: Алгебра, автор: Аноним