Предмет: Алгебра, автор: ismoskalev

Из натуральных чисел от 1 до 321 включительно исключите все числа, делящиеся на 4, но не делящиеся на 5, и все числа, делящиеся на 5, но не делящиеся на 4. Сколько чисел останется?

Ответы

Автор ответа: Oлимпиада
0

8/Задание № 1:

Из натуральных чисел от 1 до 321 включительно исключите все числа, делящиеся на 4, но не делящиеся на 5, и все числа, делящиеся на 5, но не делящиеся на 4. Сколько чисел останется?

РЕШЕНИЕ: Число чисел делящихся на 4 равно 321/4=(округление с недостатком)=80

Число чисел делящихся на 5 равно 321/5=( округление с недостатком)=64

Число чисел делящихся и на 4 и на 5 совпадает с числом чисел делящихся на 4*5=20, и их 321/20=( округление с недостатком)=16

Если от исходного количества чисел 321 отнять число чисел, делящихся на 4, но прибавить число чисел, делящихся на 20, то в результате будут отняты только числа, делящиеся на 4, но не делящиеся на 5. По аналогии, если от остатка отнять число чисел, делящихся на 5, но прибавить число чисел, делящихся на 20, то в результате еще будут отняты только числа, делящиеся на 5, но не делящиеся на 4.

321-80+16-64+16=209

ОТВЕТ: 209 чисел

Похожие вопросы
Предмет: Алгебра, автор: j3318960