Предмет: Алгебра,
автор: ifeoktistov3
Найти cos4a, ecли tga=4
Ответы
Автор ответа:
0
первым делом раскладываем как разность квадратов, получается: (син^2 = синус в квадрате, везде надо еще приписывать альфу. я не пишу, поскольку рассматривается только один угол. кос2 = косинус двух альфа, косинус двойного угла)
(син^2-кос^2)(син^2+кос^2)
Основная тригонометрическая формула: син^2+кос^2 = 1
син^2-кос^2
По формуле для тангенса двойного угла, находим тангенс альфа:
танг = (2 * 1/2)/(1 - (1/2)^2) = 1/(1-1/4) = 4/3
Как следствие из основного тригонометрического равенства:
1+танг^2 = 1/кос^2
кос^2 = 1/(1+16/9) = 1/(25/9) = 9/25
син^2 = 1 - 9/25 = 16/25
Поскольку син^4 - кос^4 превратилось в син^2 - кос^2, получается:
16/25 - 9/25 = 7/25
Ответ: 7/25
(син^2-кос^2)(син^2+кос^2)
Основная тригонометрическая формула: син^2+кос^2 = 1
син^2-кос^2
По формуле для тангенса двойного угла, находим тангенс альфа:
танг = (2 * 1/2)/(1 - (1/2)^2) = 1/(1-1/4) = 4/3
Как следствие из основного тригонометрического равенства:
1+танг^2 = 1/кос^2
кос^2 = 1/(1+16/9) = 1/(25/9) = 9/25
син^2 = 1 - 9/25 = 16/25
Поскольку син^4 - кос^4 превратилось в син^2 - кос^2, получается:
16/25 - 9/25 = 7/25
Ответ: 7/25
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Математика,
автор: polinafnaffnaf
Предмет: Русский язык,
автор: kamillagadzhieva383
Предмет: Математика,
автор: ЕгорГришин
Предмет: Математика,
автор: slavazavar