Предмет: Математика, автор: CROSS100

составить уравнение гиперболы с фокусами на оси Ох, если длина ее действительной оси равна 12,а расстояние между фокусами равно 20

Ответы

Автор ответа: vajny
0

Дано: 2а = 12;  2с = 20;

Отсюда а = 6  - действительная полуось гиперболы;

            с = 10 - половина фокусного расстояния;

Найде мнимую полуось:

b = кор(c^2 - a^2) = кор(100 - 36) = 8.

Каноническое уравнение гиперболы:

(x^2)/(a^2)  -   (y^2)/(b^2)  =  1.Или:

(x^2)/36  -   (y^2)/64  =  1.

Автор ответа: ATLAS
0

x^2/a^2 - y^2/b^2 =1 - каноническое уравнение гиперболы

2a=12

  a=6

|F1F2|=2c=20

              c=20:2=10

b=srt{c^2 - a^2}=sqrt{10^2 - 6^2}=sqrt{64}=8

 

x^2/6^2 - y^2/8^2 =1

x^2/36 - y^2/64 =1

 

Похожие вопросы
Предмет: Математика, автор: daniaabylkasymova8