Предмет: Геометрия,
автор: Arthurchke
Продолжения медиан AA1 и CC1 треугольника ABC пересекают описанную около него окружность в точках M и N соответственно , причём AM=2AA1, CN:CC1=4/3
1) Верное ли, что треугольник ABC прямоугольный? 2) AB/AC-?
Ответы
Автор ответа:
0
1. Верно. АВМС - параллелограмм, а единственный параллелограмм около которого можно описать окружность - прямоугольник.
2. Пусть У - точка пересечения медиан.NY=YC . Угол AYC -прямой. Значит медианы в АВС пересекаются под прямым углом. Проведём медиану ВВ1. Она проходит через У . УВ1=АС/2 (медиана в прямоугольном треугольнике АУС)
ВВ1=3*АС/2 АВ^2=9*AC^2/4-AC^2/4=8AC^2/4=2*AC
AB/AC=sqrt(2)
Ответ: корень из 2.
Похожие вопросы
Предмет: Химия,
автор: peytanpid228
Предмет: Информатика,
автор: PANDA2307
Предмет: Физика,
автор: olkaktc
Предмет: Алгебра,
автор: 2002makx