Предмет: Геометрия,
автор: UtkinaVioletta
стороны параллелограмма равны 5 см и 2 корня из 2,а один из его углов равен 45 градусам. найдите длину большей диагонали параллелограмма
Ответы
Автор ответа:
21
ABCD - параллелограмм, АВ=2√2 см, ВC=5 см, <A=45°
<A+<B=180°, => <B=135°. Ас - бОльшая диагональ
ΔABC: AB=2√2 см, BС=5 см, <B=135°
теорема косинусов:
AC²=AB²+BC²-2*AB*BC*cos<B
AC²=(2√2)²+5²-2*2√2*5*cos135°
AC²=4+25-20√2*(-√2/2), AC²=49
AC=7 см
ответ: бОльшая диагональ параллелограмма =7 см
<A+<B=180°, => <B=135°. Ас - бОльшая диагональ
ΔABC: AB=2√2 см, BС=5 см, <B=135°
теорема косинусов:
AC²=AB²+BC²-2*AB*BC*cos<B
AC²=(2√2)²+5²-2*2√2*5*cos135°
AC²=4+25-20√2*(-√2/2), AC²=49
AC=7 см
ответ: бОльшая диагональ параллелограмма =7 см
Похожие вопросы