Предмет: Алгебра,
автор: Dioka
В геометрической прогрессии можно её первый, третий и пятый члены считать за первый, четвертый и шестнадцатый члены некоторой арифметической прогрессии. Нужно определить четвертый член этой арифметической прогрессии, зная, что первый член равен 5
Ответы
Автор ответа:
9
a1 = b1 = 5
b3 = b1*q^2 = a1 + 3d
b5 = b1*q^4 = a1 + 15d
Подставляем
{ 5q^2 = 5 + 3d
{ 5q^4 = 5 + 15d
Выделяем 5
{ 5(q^2 - 1) = 3d
{ 5(q^4 - 1) = 15d
5(q^2 - 1)(q^2 + 1) = 5*3d
Подставляем 1 уравнение во 2 уравнение
3d*(q^2 + 1) = 5*3d
q^2 + 1 = 5
q^2 = 4
q1 = -2; q2 = 2
5*(4 - 1) = 3d
d = 5
Получаем: a1 = 5; d = 5
a4 = a1 + 3d = 5 + 5*3 = 20
b3 = b1*q^2 = a1 + 3d
b5 = b1*q^4 = a1 + 15d
Подставляем
{ 5q^2 = 5 + 3d
{ 5q^4 = 5 + 15d
Выделяем 5
{ 5(q^2 - 1) = 3d
{ 5(q^4 - 1) = 15d
5(q^2 - 1)(q^2 + 1) = 5*3d
Подставляем 1 уравнение во 2 уравнение
3d*(q^2 + 1) = 5*3d
q^2 + 1 = 5
q^2 = 4
q1 = -2; q2 = 2
5*(4 - 1) = 3d
d = 5
Получаем: a1 = 5; d = 5
a4 = a1 + 3d = 5 + 5*3 = 20
Похожие вопросы
Предмет: Химия,
автор: dzonson864
Предмет: Математика,
автор: xiknyw
Предмет: Қазақ тiлi,
автор: vikkka333337676
Предмет: Математика,
автор: dolgova10524