Предмет: Алгебра, автор: aleksandramun

Найдите сумму всех трехзначных натуральных чисел, которые при делении на 3 дают остаток, равный 2.

Ответы

Автор ответа: hote
0
у нас есть натуральные числа - это числа >0 и целые

Если число делиться на 3 и дает остаток 2 то его можно записать как

displaystyle a_n=3*n+2

нам нужно выбрать трехзначные числа.. 
найдем при каких n числа будут трехзначными

displaystyle 100 leq 3n+2 leq 999

displaystyle 98 leq 3n leq 997

displaystyle 32.66 leq n leq 332.3

значит первое число a1=3*33+2=101
последнее число an=3*332+2=998

всего таких чисел 998-101+1=300

теперь мы имеем арифметическую прогрессию
 где первый член равен 101, последний 998  

нужно найти сумму 300 членов этой последовательности

displaystyle S_{300}= frac{a_1+a_{300}}{2}*300= frac{101+998}{2}*300=164850


Автор ответа: Darininna
0
S=(a1+a300)/2*n=54750.
Автор ответа: Darininna
0
Используем выведенную нами формулу:
Автор ответа: Darininna
0
54750*3+598=164848
Автор ответа: Darininna
0
Ответ: 164850
Автор ответа: Darininna
0
Прошу прощения, не туда написала.
Прикрепляю решение сюда.

При делении на 3 числа могут давать остатки 0,1,2, например, посмотрим с числами первого десятка:
3/3 остаток 0
4/3 остаток 1
5/3 остаток 2
6/3 остаток 0
Заметим, что остаток 2 имею числа через 3.
Значит найдем первое трехзначное число, которое дает остаток 2: 101.
Значит нам надо найти сумму всех чисел 101+104+107+...+998. Всего таких числе 300 ((998-101)/3+1).
Заменим все и представим в таком виде: x*3+2.
Получим: 33*3+2+34*3+2+...+332*3+2=
3*(33+34+...+332)+2*300=3*(33+...+332)+600.
Используем арифметическую прогрессию: S=(a1+a300)/2*300=54750.
Используем выведенную нами формулу:
54750*3+600=164850.
Похожие вопросы
Предмет: Информатика, автор: konstantinbuilov
Предмет: Физика, автор: АлинаЧекаева