Предмет: Геометрия,
автор: marijakeshishy
В окружности с центром о проведены взаимно перпендикулярные хорда MK и MN,MK не равно MN,OC-перпендикуляр к хорде MK,OD-перпендикуляр к хорде MN.Укажиье верные утверждения:
А)OC=OD
Б)OD-серединный перпендикуляр к отрезку MN
В)KN=2OM
Г)MO-биссектриса ушла KMN
Ответы
Автор ответа:
0
Ответ: Б), В).
Объяснение:
А) Неверно.
OD - высота и медиана равнобедренного треугольника MON, ОС - высота и медиана равнобедренного треугольника МОК.
Если бы отрезок СО был равен DO, то ΔODM был бы равен ΔОСМ по катету и общей гипотенузе ОМ. Но тогда были бы равны половины данных хорд, а по условию хорды не равны.
Б) Верно.
ΔMON равнобедренный (MO = NO как радиусы), OD - его высота, значит и медиана, следовательно OD - серединный перпендикуляр к MN.
В) Верно.
∠NMK = 90° по условию, этот угол вписанный, значит он опирается на полуокружность, т.е. NK - диаметр. Так как ОМ - радиус, то
NK = 2OM.
Г) Неверно.
МО - медиана треугольника NMK. Если бы отрезок МО был биссектрисой, то треугольник NMK был бы равнобедренным, а по условию MK ≠ MN.
Приложения:
Похожие вопросы
Предмет: Математика,
автор: ruslanmamediv88
Предмет: Русский язык,
автор: milana5341
Предмет: Биология,
автор: kattycat402
Предмет: Геометрия,
автор: meglitskaya
Предмет: Алгебра,
автор: frankenchtain8