Предмет: Алгебра,
автор: yuhgffsxxcv
докажите что выражение x^2-4x+5 принимает положительные значения при всех значениях x
Ответы
Автор ответа:
0
докажите что выражение x^2-4x+5 принимает положительные значения при всех значениях x
Первый вариант
x^2-4x+5 =x^2-4x+4+1 =(x-2)^2+1
так как квадрат разности (х-2)^2 >=0 при всех значениях х на числовой оси то
сумма (x-2)^2+1>0 или принимает только положительные значения при всех значениях х
Второй вариант
x^2-4x+5 =0
D=16-20=-4<0
Так как коэффициент при х^2 больше нуля (1>0) и дискриминант отрицателен, то гарфик параболы не имеет точек пересечения с осью Ох и находится выше оси Ох.
Поэтому при любых значениях х x^2-4x+5>0
Первый вариант
x^2-4x+5 =x^2-4x+4+1 =(x-2)^2+1
так как квадрат разности (х-2)^2 >=0 при всех значениях х на числовой оси то
сумма (x-2)^2+1>0 или принимает только положительные значения при всех значениях х
Второй вариант
x^2-4x+5 =0
D=16-20=-4<0
Так как коэффициент при х^2 больше нуля (1>0) и дискриминант отрицателен, то гарфик параболы не имеет точек пересечения с осью Ох и находится выше оси Ох.
Поэтому при любых значениях х x^2-4x+5>0
Похожие вопросы
Предмет: Химия,
автор: ArturNurgaliev
Предмет: Физкультура и спорт,
автор: moanmblac
Предмет: Физика,
автор: msukhanberdiyev
Предмет: Математика,
автор: 2135993
Предмет: Обществознание,
автор: Nivel