Предмет: Математика,
автор: andrejbumer
В двузначном числе x цифра единиц равна b, цифра десятков – a. При каком из условий x обязательно делится на 6? ВАРИАНТЫ:1)b+a=6 2)b=6a 3)b=5a 4)b=2a 5)a=2b
Ответы
Автор ответа:
0
Чтобы число делилось на 6 необходимо и достаточно, чтобы сумма
цифр делилась на 3 и число было чётным. Подходит только вариант 4.
в = 2а оканчивается на чётнную цифру, значит это число чётное.
а + 2а = 3а сумма цифр делится на 3. А всё число делится на 6..
Ответ. Вариант 4) в = 2а
цифр делилась на 3 и число было чётным. Подходит только вариант 4.
в = 2а оканчивается на чётнную цифру, значит это число чётное.
а + 2а = 3а сумма цифр делится на 3. А всё число делится на 6..
Ответ. Вариант 4) в = 2а
Автор ответа:
0
число х должно делится на 3 и быть парным
значит в - парное
при 4 условии при любом а от 1 до 4 в равно соответственно 2, 4, 6, 8 и сумма цифр делится на 3
значит в - парное
при 4 условии при любом а от 1 до 4 в равно соответственно 2, 4, 6, 8 и сумма цифр делится на 3
Похожие вопросы
Предмет: Химия,
автор: marikovtun04
Предмет: Математика,
автор: F8928f
Предмет: Английский язык,
автор: olegbentsev
Предмет: Физика,
автор: Оксимирон12