Предмет: Алгебра,
автор: карье
Доказать неравенство : tgA*tgB<1, если A и B - острые углы тупоугольного треугольника
Ответы
Автор ответа:
0
Доказательство: A и B - острые углы тупоугольного треугольника, значит угол С тупой и
0<A<90,0<B<90,90<C<180 и
cos C<0,cos A>0,cos B>0 (*)
tgA*tgB<1 равносильно неравенству
tgA*tgB-1<0
Рассмотрим левую часть неравенства, используя тригонометрические формулы
tg x=sin xcos x
cos (A+B)= cosA*cosB- sinAsinB
cos(180-A)=-cos A
и соотношение углов треугольника A+B+C=180 и учитывая (*):
tgA*tgB-1=sinAcos A*sin Bcos B-1=(sinAsinB-cosA*cosB)(cos A*cos B)=
=-cos(A+B)(cos A*cos B)=cos(180-(A+B))(cos A*cos B)=cos C(cos A*cos B)<0,
А значит tgA*tgB-1<0, или tgA*tgB<1, что и требовалось доказать.
Похожие вопросы
Предмет: Обществознание,
автор: 2000Madikosha2000
Предмет: Биология,
автор: Аноним
Предмет: Биология,
автор: Аноним
Предмет: Математика,
автор: Zion125