Предмет: Математика,
автор: Dfghjdff
Средняя линия равнобокой трапеции в каторую можно вписать окружность
=12см. найти боковую сторону трапеции.
Ответы
Автор ответа:
0
Мы знаем, что средняя линия трапеции равна полусумме оснований самой трапеции. Возьмем основания трапеции как А и В, а боковую сторону как С. Из средней линии получаем, что (А+В)/2=12. Так же мы знаем свойство описанной трапеции, которое гласит, что суммы противоположных сторон равны. А+В=С+С.
Теперь возьмем первое выражение.
(А+В)/2=12
А+В=24
Теперь заменяем А+В из первого во второе выражение.
24=2*С
С=12
Теперь возьмем первое выражение.
(А+В)/2=12
А+В=24
Теперь заменяем А+В из первого во второе выражение.
24=2*С
С=12
Приложения:
Автор ответа:
0
Так в трапеции не 3 точки..должны вроде быть 4 АВСД
Автор ответа:
0
Нет. Я взял не точки, а стороны за А, В, С. Так как боковые стороны равны, они обе равняются С. Это неизвестные такие
Автор ответа:
0
Ок
Автор ответа:
0
Сейчас прикреплю рисунок. Я думал, что он не понадобится и его не прикрепил.
Автор ответа:
0
- в равнобедренную трапецию можно вписать окружность, если боковая сторона равна средней линии.
- 2R = h
опустим высоту. она образует прямоугольный треугольник с углами 90, 30 и 60 гр. ⇒ h=1/2*стороны = 1/2*4=2 дм
S(трап)=ср. линия*высоту = 4*2=8дм²
S(круга)= πR²=1²*π=π
Приложения:
Похожие вопросы
Предмет: Қазақ тiлi,
автор: mikam9245
Предмет: История,
автор: ayankyzyadiya
Предмет: География,
автор: nuraliisaev6
Предмет: Математика,
автор: кукарепка
Предмет: Математика,
автор: Savenkovamaria