Предмет: Алгебра,
автор: ВЕБ
используя простейшие преобразования к график функции y-x² постройте график функций y=x²+4x+1
Ответы
Автор ответа:
0
ДАНО: y = x² + 4*x + 1
ПОСТРОИТЬ ГРАФИК
РЕШЕНИЕ.
Преобразуем функцию к квадрату суммы.
y = x² + 4*x + 1 = (x² + 2*(2*x) + 4) - 4+1 = (x+2)² - 3 - прибавили и вычли 4.
Получили уравнение параболы у = х² со смещенной вершиной в точку А(-2;-3)
Для построения параболы используем точки (0;0), (1;1), (2;4), (3,9) и свойство параболы, что она чётная (парная). Заданную функцию начинаем строить из точки (-2;-3)
Рисунок с графиками в приложении.
Приложения:
Автор ответа:
0
ТЕОРИЯ (это важно):
- Сначала нужно найти начало координат, то есть вершину параболы с учётом её сдвига. Для этого находим координаты x₀, y₀ вершины O параболы (по осям OX и OY соответственно), вычисляем их по специальным формулам: .
- O(x₀;y₀), где x₀ — координата по оси OX, y₀ — координата по оси OY, O — начало координат.
- Потом, когда найдена вершина, строим график той функции, из которой получена данная нам в условии функция, начиная от вершины.
- Важно понимать: если нам дана функция, например, y=4x²+2x+1, то после нахождения вершины параболы для данной функции строим, начиная от вершины, график функции y=4x² — смотрим на коэффициент (число) перед x². Так, функция y=2x²-1x+2 получена из функции y=2x², а y=x²+4x+1 получена из функции y=x².
- Задача коэффициентов b и c — «сдвинуть» вершину параболы на определённую координату.
- Таким образом, функция y=ax²+bx+c называется квадратичной, график — парабола, получена из функции y=ax² (где a — коэффициент перед x²) сдвигом вдоль осей координат на m по оси OY и на L по оси OX.
- Если a>0, ветви параболы направлены вверх; если a<0, ветви параболы направлены вниз.
РЕШЕНИЕ:
- Квадратичная функция y=x²+4x+1. График — парабола, ветви направлены вверх (a>0), получена из функции y=x² сдвигом вдоль осей координат на 3 единичных отрезка вниз и на 2 единичных отрезка влево.
- 1. Найдём координаты начала координат:
Значит, O(-2;-3).
- 2. Построим график функции y=x². Строим таблицу значений:
x=1 x=2 x=3
y=1 y=4 y=9
График на картинке
АЛГОРИТМ ПОСТРОЕНИЯ КВАДРАТИЧНОЙ ФУНКЦИИ y=ax²+bx+c:
- Найти координаты начала координат (вершины параболы).
- Определить, из какой функции получена данная в условии функция.
- Строим таблицу значений для той функции, из которой получена данная нам в условии функция.
- Отмечаем на чертеже точку вершины параболы, построить оси.
- Построить и подписать параболу.
Приложения:
Похожие вопросы
Предмет: Литература,
автор: igorgusak84
Предмет: Литература,
автор: janarbekuiyabdulhan2
Предмет: Русский язык,
автор: sandravita
Предмет: Химия,
автор: Nemiha
Предмет: География,
автор: nastjapastrevich