Предмет: Геометрия,
автор: jipsterhipster
Отрезок АО - медиана треугольника АВС. Точка М лежит на луче АО, причём АО-ОМ. Докажите, что ∠АВМ = ∠АВС +∠ВСА.
Ответы
Автор ответа:
0
∠ABM=∠ABC+∠CBM
Рассмотрим треугольники AOC и BOM:
AO=OM - по условию
BO=OC, т.к. АО - медиана ΔАВС
∠BOM=∠AOC - как вертикальные углы
Значит треугольники ВОМ и АОС равны по первому признаку.
У равных треугольников соответствующие стороны и углы равны, значит ∠АСО=∠ОВМ (∠СВМ=∠ВСА)
∠ABM=∠ABC+∠CBM=∠АВС+∠ВСА.
Рассмотрим треугольники AOC и BOM:
AO=OM - по условию
BO=OC, т.к. АО - медиана ΔАВС
∠BOM=∠AOC - как вертикальные углы
Значит треугольники ВОМ и АОС равны по первому признаку.
У равных треугольников соответствующие стороны и углы равны, значит ∠АСО=∠ОВМ (∠СВМ=∠ВСА)
∠ABM=∠ABC+∠CBM=∠АВС+∠ВСА.
Похожие вопросы
Предмет: Математика,
автор: anastasia12mald
Предмет: Математика,
автор: srhii33345
Предмет: Физика,
автор: lekonznik
Предмет: Математика,
автор: nikitkakirchen
Предмет: История,
автор: ainiesta19997