Предмет: Алгебра, автор: Unknownintellegence

Решите логарифмическое неравенство:

LOG1/6 (10-x) + LOG1/6 (x-3) ≥ -1

Ответы

Автор ответа: sedinalana
0
ОДЗ
{10-x>0⇒x<10
{x-3>0⇒x>3
x∈(3;10)
log(1/6)[(10-x)(x_3)]≥-1
Основание меньше 1,знак меняется
(10-x)(x-3)≤6
10x-30-x²+3x-6≤0
x²-13x+36≥0
x1+x2=13 U x1*x2=36
x1=4 U x2=9
x≤4 U x≥9
x∈(3;4] U [9;10)
Автор ответа: Unknownintellegence
0
Добавьте пояснения, пожалуйста.
Похожие вопросы
Предмет: Химия, автор: arinasheremetiva