Предмет: Алгебра, автор: Аффтапелод

Какого множество точек плоскости, заданных неравенством:
 x^{2} + y^{2}  geq 0

Ответы

Автор ответа: 90misha90
0
(x-x_0)^2+(y-y_0)^2=R^2 - уравнение линии круга радиуса R с центром в точке (x_0;y_0)

например:
x^2+y^2 geq 9

Неравенство (x-0)^2+(y-0)^2 geq 3^2 - задает множество точек за линией окружности, в которое также входит множество точек, которое задет саму линию круга

А если радиус равен нулю? что это? это крайний случай круга - точка - безразмерный объект:

уравнение (x-0)^2+(y-0)^2=0^2 задает точку (0;0)

что задает следующее неравенство?
(x-0)^2+(y-0)^2 geq 0^2
оно задает все пространство за точкой (0;0) и саму точку,

т.е. неравенство x^2+y^2 geq 0 задает всю координатную плоскость

P.S. А что задает неравенство x^2+y^2 leq 0 ?
оно задает как и равенство лишь одну точку (0;0)
Автор ответа: 90misha90
0
пожалуйста)
Похожие вопросы
Предмет: Литература, автор: 0661321153anna89
Предмет: Химия, автор: kowechka95