Предмет: Алгебра, автор: Princess1304

ПОМОГИТЕ ПОЖАЛУЙСТА!!!! СРОЧНО!
Подмножество А множества целых чисел от 1 до 2000 включительно, обладает свойством, что сумма никаких 2 элементов не равна 2016. Какое максимальное кол-во элементов в подмножестве А?

Ответы

Автор ответа: mathgenius
0
Запишем все пары натуральных чисел что дают 2016: 1+2015,2+2014,3+2013,....,1008+1008,......,2013+3,2014+2,2015+1. То есть всего 2015 пар. Но пара 1008+1008 не подходит,тк множество A не содержит равных чисел. Также все пары что идут после 1008 равны тем что идут до 1008.Таким образом общее число таких пар: (2015-1)/2=1007. Первые 15 пар не подходят тк числа в множестве от 1 до 2000. То есть остается 1007-15=992. Чтобы число чисел в модмножестве А было максимальным. Нужно взять все числа в данном множестве ,что не входят в данные 992 пары. И половину чисел входящих в эти 992 пары,тк если взять больше половины,то появиться хотя бы одна пара дающая в сумме 2016.(Надеюсь понятно) . Другими словами максимальное число чисел подмножество А равно: N=(2000-2*992)+992=2000-992=1008. Ответ:1008.
Похожие вопросы
Предмет: Алгебра, автор: speta222