Предмет: Геометрия,
автор: славик61
решение задачи:биссектриса углов прямоугольника делит его большую сторону пополам меньшая сторона прямоугольника = 5см найти пиримирт прямоугольника.
Ответы
Автор ответа:
0
По-моему решается так:
1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB.
2) Биссектриса делит угол АСД на равные углы АСМ и МСД.
3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ).
4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5.
5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10.
6) Периметр прямоугольника равен (10+5)2= 30
Ответ: 30
1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB.
2) Биссектриса делит угол АСД на равные углы АСМ и МСД.
3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ).
4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5.
5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10.
6) Периметр прямоугольника равен (10+5)2= 30
Ответ: 30
Похожие вопросы
Предмет: Математика,
автор: berikbekzakenov
Предмет: Биология,
автор: ng310106
Предмет: Астрономия,
автор: bektashovdiyar
Предмет: Математика,
автор: alex1998god
Предмет: Алгебра,
автор: valerisam0103